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Abstract—Distributed deduplication is one of today’s most
prominent techniques for efficient data transfer of data across
a network. However, leveraging a distributed application with
distributed deduplication capabilities is a complex challenge,
not accessible to the average programmer.

This paper advocates that the time has come to devise
general-purpose middleware abstractions that can democratize
the use of state-of-art distributed deduplication techniques,
even by programmers with no know-how on the field. We
propose TurboSockets, the first middleware abstraction that
aims at such a goal. The TurboSockets middleware enables
unskilled programmers to establish a communication channel
between two remote processes and, through that channel,
exchange data streams whose content is deduplicated by state-
of-the-art algorithms. Turbosockets hides all the complexity
associated with the deduplication protocol away from the
programmer, closely resembling traditional inter-process com-
munication APIs.

Using a full-fledged prototype of the TurboSockets middle-
ware, experimental results with real workloads confirm gains
in performance and transferred volumes for a wide range of
real workloads and scenarios.

Keywords-distributed deduplication; data redundancy; sock-
ets; middleware;

I. INTRODUCTION

We are facing a digital revolution with giant proportions.
The International Data Corporation (IDC) forecasts that 35
zettabytes will be generated in 2020, while in 2011 it was
1.8 zettabytes [1]. Storing and transferring such massive
amounts of data will inevitably have substantial costs.

Fortunately, a crucial opportunity to reduce such costs
arises from the inherent redundancy stemming from the data
we generate. More precisely, the IDC estimates that 75% of
the generated data results from copies from previous data
[2]. Consequently, a considerable percentage of data that
we store or transfer across a network will be similar to
data already stored at the target device or machine. Not
surprisingly, techniques that are able to detect and eliminate
such redundancy are more and more omnipresent in today’s
applications, enabling companies to reduce the cost from
creating, capturing, managing and storing information since
2005 to 2011 [1] to one sixth.

In this paper we focus on the costs of transferring large
amounts of data between processes across a network.

One of today’s most prominent techniques for efficient
data transfer of data across a network is distributed dedupli-
cation [3], possibly combined with conventional techniques
such as data compression or caching. Distributed dedupli-
cation comprehends a set of techniques that try to remove
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redundant data from streams that are about to be transferred
between a pair of remote processes, with the intent of re-
ducing network consumption costs and/or improve network
performance. The key insight is that the receiver may already
hold some chunks of data that are similar to chunks in
the data stream that the sender wishes to transfer. With a
proper distributed deduplication protocol, such redundant
chunks may be detected and, thus, not transmitted across the
network; instead of their contents, the sender needs only to
transmit lightweight references that tell the receiver where,
within the contents that it holds locally, it can obtain the
redundant chunks.

A number of reasons helps one understand the impor-
tance of distributed deduplication today. First, distributed
deduplication has been critical in ensuring acceptable QoS
in services that demand transferring large amounts of data
in short periods of time, e.g. cloud storage services, despite
bottlenecks in wide-area networks [4]. Second, distributed
deduplication has also shown great benefits in accelerating
WANs of the developing world, where bandwidth is scarce
and expensive [5]. Finally, the bandwidth and battery limita-
tions of mobile devices can often be minimized by employ-
ing distributed deduplication [6; 7]. Not surprisingly, many
of the most successful IT companies employ distributed
deduplication at the core of their services. Dropbox [8],
Amazon and Google [9] are only two examples among many
whose success depends on effective distributed deduplica-
tion.

Yet, when one shifts one’s attention to the universe of
lower-profile distributed applications, developed and main-
tained by less resourceful programmers, it becomes evident
that distributed deduplication is absent from the vast ma-
jority of such applications. The reason is simple: to the
best of our knowledge, there is not any easy-to-use generic
middleware abstraction that allows the average programmer
to leverage their distributed applications with deduplication
techniques without becoming a deduplication expert.

In fact, should a programmer decide to incorporate dis-
tributed deduplication in his/her application, such a pro-
grammer is required to implement complex and error-prone
protocols. This represents a relevant challenge that the
average programmer will be reluctant or just unable to take
on. Furthermore, the option of importing the source code
of some deduplication library, implemented by others in
the context of a distinct project, is usually inapplicable,
as most deduplication solutions are specifically tailored to
particular workloads and protocols (e.g. web, virtualization,
replication), hence hampering their generic use.

This paper advocates that distributed deduplication should
be democratized through a suitable general-purpose middle-



ware abstraction for the masses. In the same way that suc-
cessful middleware abstractions such as Berkeley Sockets,
Remote Procedure Calls and Remote Method Invocation [10]
made distributed programming available for a wide universe
of average programmers, we claim that this can also be
achieved with distributed deduplication.

This paper proposes TurboSockets, the first middleware
abstraction that aims at democratizing the use of distributed
deduplication protocols. The TurboSockets middleware al-
lows for the average programmer to establish a communi-
cation channel between two remote processes and, through
that channel, exchange data streams whose content is dedu-
plicated by state-of-the-art algorithms. Turbosockets hides
all the complexity associated with the deduplication protocol
away from the programmer. Thus, the programmer is neither
required to have any prior-knowledge of deduplication nor
to be an expert programmer to use distributed deduplication
in his systems. The Turbosockets API is designed to closely
resemble the BSD Sockets [10], which are familiar to many
programmers.

In order to be useful for most applications, the Tur-
boSockets middleware needs to meet some fundamental
requirements:

1) As the state of the art in the fields evolves, Turbosockets
must be extensible so as to be upgraded with new
deduplication algorithms.

2) Since different applications and workloads call for dif-
ferent deduplication solutions [11; 12; 3], Turbosockets
must support multiple algorithms and combinations
thereof, and enable programmers and applications to
easily fine-tune the algorithms and parameters that
are most suitable for each particular application and
workload.

3) Since two processes may have individually set distinct
algorithms and parameters, Turbosockets must be able
to cope with such heterogeneity.

The above requirements incur significant challenges that
our solution must address. Overcoming such challenges
while retaining the desired abstraction simplicity and, simul-
taneously, achieving good performance is far from trivial.

Our contribution, Turbosockets, accomplishes this by
relying on a tunable extensible distributed deduplication
protocol, encapsulated inside a socket-like communication
channel abstraction. Our middleware constitures a generic
framework can be extended by any expert programmer by
plugging in new algorithms in a modular fashion. Hence,
TurboSockets is also a valuable tool for the research com-
munity, as it provides researchers with a way of effortlessly
test new algorithms and optimizations in the TurboSockets
framework, instead of building new protocol prototypes and
applications from scratch.

We have implemented a full-fledged prototype of the
TurboSockets middleware. The library is publicly available
for any programmer to use using one of 19 possible pro-
gramming languages (including C, Java, Python, PHP, Ruby,
C#, and CLISP).1

We have evaluated the library implementation using a file
transfer application that we built relying on TurboSockets.

1The TurboSockets library source code is publicly available at
https://bitbucket.org/jsalada/turbosockets

Our experimental results show that, on different scenarios
with real workloads:

1) TurboSockets are able to significantly transfer less
bytes across the network, when compared to a baseline
solution using (undeduplicated) Berkeley Sockets (up
to 81% reduction).

2) In limited bandwidth scenarios, TurboSockets prove to
be substantially faster (up to 80% with 3 Mbps)than
Berkeley Sockets.

The remainder of the paper is organized as follows.
Section 2 surveys related work on distributed deduplication.
Section 3 introduces our solution. Section 4 evaluates.
Finally, Section 5 draws conclusions and discusses future
work.

II. RELATED WORK

Much work, with the objective of decreasing bandwidth
usage or latency of data transfers, has been developed in
the most diverse areas. Distributed deduplication has been
successfully applied in project repositories, such as, Git 2 or
CVS [13]. Several works on the Web [14; 7], demonstrated
that distributed deduplication reduces both latency and traffic
of http-based systems. Wide-area networks in developing
countries were accelerated employing distributed dedupli-
cation [5]. Proposals in remote file systems [15], multi-user
file sharing systems [8] and replication systems [16; 17] also
showed great improvements with distributed deduplication.

A. Data Division
The first phase of distributed deduplication is the redun-

dancy detection. Given a stream to deduplicate at the sending
node (sender), one must first identify which chunks of it are
already present at the receiving node (receiver). A stream is
an array of bytes, while a chunk is a sub-part of the stream.
A chunk may the same size as the the stream or smaller. The
first step to deduplicate is to divide the stream into chunks.

The granularity at which data division occurs assumes a
preponderant role in the overall deduplication performance.
For any distributed deduplication solution, the lower the
granularity the better is redundancy detection, but at the cost
of an increase on metadata footprint [17; 12; 3].

The coarsest granularity does not divide the stream, as
it tries to find an identical stream to the one being dedu-
plicated. We call it whole-stream division (WSD) and it has
been widely employed [12; 18; 3; 8]. Meyer et. al. performed
a deduplication evaluation on 857 Windows desktops and
found that whole-stream achieved three-quarters of the space
savings obtained by the finest-granularity[12]. On the other
hand, Policroniades, C. [11] was only able to get 5% of
space savings in data-sets with no evident correlation, and
where finer granularities reached gains up to 20%.

Chunks may also be divided into non-overlapping fixed-
sized chunks. Rsync [19], a tool which identifies redundant
parts of files stored in different machines, was one of the
first deduplication solutions to use fixed-sized division (FSD)
in literature. Other deduplication works employing FSD are
TAPER [17] or OS Streaming Cache [20]. FSD does not
deal well with modifications [11]. However, it presents inter-
esting advantages, such as, better space and computacional

2http://git-scm.com/



efficiency when compared to variable-size division [21], and
performs better than whole-stream division [12].

In order to overcome the propagation of chunk modifi-
cations that imply shifting data (insertions or deletions of
data) into the further chunks, variable-sized division was
introduced. This is accomplished at the expense of more
computational and storage complexity [3]. Since physical
storage blocks are fixed-sized, variable-size chunks will not
fit exactly in one physical block, adding additional overhead
to overcome the situation [22].

Content-Defined Chunking (CDC) [15] is the most com-
mon technique to perform variable-size division technique,
which have been optimized in a number of ways [22; 23; 24].
CDC examines every overlapping fixed-sized chunks of a
data stream, using a sliding window. Whenever the window
satisfies a certain condition, a new breakpoint is found.
Breakpoints delimit the boundary regions which will divide
the data stream into new chunks. They are selected using
an efficient hash function, such as Rabin fingerprints [25].
Minimum and maximum size restrictions on chunk size
ensure pathological cases do not corrupt the deduplication
protocol.

CDC shows a consistently better effectiveness when com-
pared to fixed-size division or whole-stream [11; 12; 3], al-
though being the most expensive in terms total deduplication
time and CPU usage [3].

B. Identifier Generation
After identifying chunk boundaries, their identifiers are

generated. There are two prominent groups of identifier
types, identical detection identifiers and similar detection
identifiers.

The identifiers that detect identical chunks are hash values
of chunks, generated by an hash function. A hash function
H accepts any chunk d as input and returns a hash h,
meaning H(d)=h. The hash h is the chunk identifier. In the
context of deduplication, the first important property of the
hash functions is they must output a hash where Size(h)
is much lesser than Size(d). The second property must
guarantee that the probability of two different chunks, d1 and
d2, generate identical hash-values is very low. A collision
occurs when H(d1) = H(d2) = h, resulting in possible data
corruption.

The most widely used hashing techniques, in deduplica-
tion systems, are cryptographic hash functions (CHF). The
CHF, MD5 [26], was used in Presidio [18]. SHA-1 [27], a
CHF of160 bits, is also very popular in deduplication, being
used in LBFS [15], Presidio [18]. Other CHF are present
in deduplication works, such as the SHA-256 [27] in OS
Streaming [20].

Non-cryptographic hash functions (NCHF) have also been
employed with success in deduplication systems. The NCHF
Super-Hash3 generated identifiers for a memory dedupli-
cation system [28] and MurmurHash4 for a mobile web
application [7].

The collision probability, PC , depends directly on the
number of bits of the hash function and the total amount
of data that the deduplication system will process during
its entire lifetime. Uou et. al. [18] present a derivation of

3redshift.sourceforge.net/superhash/
4http://code.google.com/p/smhasher/wiki/MurmurHash

the original PC equation [29; 30; 31; 18], which allows to
dimension the system’s PC , as a function of the Size(h) = b
and the expected total amount of data’s magnitude order q,
that is going to be deduplicated:

PC(b, q) ≈ 22q−(b+1) (1)

An adequate collision dimensioning is important not only to
prevent high collision rates, but also because many designs
do not need the strongest hash function to keep collision
rates at acceptable values. Black [31] criticizes the general
standard of using CHF in deduplication, when there is no
adversaries, stating that systems enter in overkill either by
relying on strong hashes (many bits), either by selecting
CHF.

When deduplication is based on delta-compression, one
chunk very similar to the one being deduplicated must
be firstly identified. Different types of identifiers may be
created for similarity detection. Sketches are a set of iden-
tifiers from different parts of a chunk. If two chunks hold
sketches with many identifiers in common, then they are
considered similar. This scheme was applied in former delta-
enconding proposals [25; 32; 33]. Super-sketches [34; 18]
are summaries of sketches. Sketch’s identifiers are coalesced
into groups of more than one, and hashed into a super-
identifier. Finally, similarity hashes or simhashes are created
by an hash function, where two similar chunks will generate
similar hash values in terms of Hamming Distance [35].
Similar chunks have simhashes with many common bits.

C. Redundancy Detection
As soon as chunk identifiers of the stream to send are

computed, the deduplication protocol exchanges such identi-
fiers and tries to determine which of such chunks are already
present at the receiver process. This problem is not trivial to
solve in a scalable and efficient way. Hash Challenges try
to minimize the metadata exchanged by transmitting only a
part of each identifier first [36]. Some solutions index chunks
at the receiver by their identifiers directly into an in-memory
hash database, namely a simple hash-table implementation
[16] or a more sophisticated, but still very simple, software
[17; 15]. More complex designs have been proposed to
cope with the scalability issue. DDFS [21] and Presidio [18]
implement the storage of the identifiers index in disk, while
memory works as a cache.

More improvements to these features have been proposed.
MAD2 [37] uses the same base concepts of DDFS and dis-
tributes deduplication by several nodes to increase scalability
and throughput. Extreme-Binning [38] stores identifiers and
chunks in a common container if they belong to the same
or similar stream. Another suggested scheme [39] utilizes
sparse indexing to explore disk locality with the use of
containers and a sparse-index. Shilane et al. [40] transposes
the DDFS system to a distributed deduplication solution by
adding super-sketches of chunks to the metadata stored in
containers, so that delta compression may be performed over
chunks where compare-by-hash failed to detect redundancy.

III. TURBOSOCKETS

This section describes the TurboSockets API in the per-
spective of the programmer that may use this work in
his applications. Then, we cover all the architecture of
TurboSockets, which is illustrated in Figure 1.



A. TurboSockets API
The current TurboSockets API supports TCP TurboSock-

ets, offering identical primitives to the BSD Sockets API,
such as, socket, bind, listen, accept, connect, recv and send
(see Table I).

Comparing to BSD Sockets, the only additional elements
in TurboSockets API are the primitives related to the Envi-
ronment (Table I). The Environment provides TurboSockets
with access to the chunk database and automatic internal
memory management. In order to execute any primitive
at TurboSocket instances, an Environment must exist. An
Environment instance may be associated to more than one
TurboSocket instance.

TurboSockets API is virtually available to programmers
of any language. We implemented the API using SWIG5,
an interface compiler that generates code wrappers for
nineteen program languages, such as, Java, Python, PHP,
Ruby, C#,CLISP, etc. This assures our proposal adapts to
the programmer and not the opposite.

Table I
THE TURBOSOCKETS API IN C

TurboSocket API
int ts socket(ts env t *env,int family,int type,int proto,,ts socket t **tsock);
int ts socket set addr(ts env t *env,ts socket t *tsock,int hostname,int family,int
dedup port,intundedup port,int flags);
int ts socket bind(ts env t *env,ts socket t *tsock);
int ts socket listen(ts env t *env,ts socket t *tsock,int backlog);
int ts socket accept(ts env t *env,ts socket t *tsock,ts socket t *new conn);
int ts socket connect(ts env t *env,ts socket t *tsock);
int ts socket send(ts env t *env ,ts socket t *tsock, char *buff, ts stream sz t
*buff sz);
int ts socket recv(ts env t *env,ts socket t *tsock,ts stream sz t *buff sz);
int ts socket destroy(ts env t *env,ts socket t *tsock);
Environment API
int ts env create(ts env t **env);
int ts env destroy(ts env t *env);
void ts env set db filename(const char *name);
void ts env log filename(const char *name);

B. TurboSockets Architecture Overview

Machine 1

Process 1

Environment

TurboSocket 1

Storage Engine

Machine 2

Process 2

Environment

TurboSocket 2

Storage EngineNetwork

Figure 1. The high-level architecture of two TurboSocket pairs

TurboSockets aim at reducing the bandwidth usage of
applications that transmit data across remote nodes. To
achieve that, TurboSockets offer bidirectional channels of
communication where different processes may exchange
data streams, while transparently, state-of-art deduplication
techniques detect and remove duplicate data from the ex-
changed streams (Figure 1).

Using the send call of TurboSockets API, any process
may submit data for deduplication and transmission. In such
a situation, we define as sender the TurboSocket end calling
the send primitive, and receiver the other TurboSocket end
that will receive the data. All the ends of a TurboSockets
communication channel may assume both behaviours, as
sender and receiver.

5http://www.swig.org

TurboSockets process data as byte arrays, which we call
streams. The Chunk Division module (CD) at the sender
initiates the deduplication process, by dividing the submitted
streams into chunks. The objective is to identify which
chunks within the stream already exist at the receiver, so
the sender will not transmit them. Following the CD phase,
the Identifiers Generation module (IG) computes hash-based
identifiers of the new chunks. The chunk identifiers enable
the detection of duplicates, during the Redundancy Detec-
tion (RD) phase, where the sender transmits new chunk
identifiers to the receiver which compares them against the
identifiers of the chunks locally present at receiver. Then, the
receiver communicates the sender which stream chunks are
redundant. A stream chunk is redundant when it is a dupli-
cate of other chunk at the receiver. Once the sender knows
which chunks are redundant it proceeds to the Redundancy
Elimination phase (RE) of the stream, transmitting only the
chunks data that the RD was not able to find a duplicate at
the receiver. Then, the Stream Reconstruction module (SR)
at the receiver, reconstructs the stream with the chunks data
transmitted by the receiver plus the redundant chunks data
retrieved by the SE.

One process might run several instances of TurboSockets
(e.g. one webserver could have one TurboSocket per client),
which might be aggregated within a single Environment.
An Environment provides all its TurboSocket members with
access to the same chunk database. The chunk database
allows to look up the stream chunk identifiers for redundancy
within a large set of chunks, and stores the chunks’ data
to enable the reconstruction of redundant chunks locally at
the receiver. The Storage Engine (SE) manages the chunk
database. The association of several TurboSockets into shar-
ing the same SE leads to: 1) Storage space savings, as the SE
stores chunks appearing in more than a TurboSocket only
once; 2) Increased RD ability, as one TurboSocket can access
all the chunks that other TurboSocket instances sharing the
same Environment received.

TurboSockets support an hierarchic multi-level dedupli-
cation approach. Each deduplication level tries to find re-
dundant chunks with different deduplication algorithms and
parameters. Levels are hierarchic, meaning the top level
first deduplicates all the data arriving for transmission,
then the resulting non-redundant chunks feed the immediate
lower level. When no more levels are available, the sender
transmits the remaining non-redundant chunks data to the
receiver.

TurboSockets are highly configurable and two instances
with different deduplication configurations can deduplicate
and exchange data between each other, despite their dif-
ferences. An handshake protocol is performed immediately
after two TurboSockets establish a new connection. During
the handshake protocol they exchange their respective con-
figurations and reach an agreement about the configuration
to employ. To enrich configurations TurboSockets provide a
generic framework of deduplication, with state-of-art algo-
rithms built-in. Expert programmers may easily plug in new
algorithms in a modular fashion.

BSD Sockets support TurboSockets in establishing all the
message exchanges across remote TurboSocket instances.
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API

C. TurboSockets - Distributed Deduplication Protocol

The TurboSockets-Distributed Deduplication Protocol
(TS-DDP) performs the distributed deduplication of
data streams across remote TurboSocket nodes. The
protocol is illustrated in the Figure 2. The TS-DDP
comprises the Deduplication Master in charge of the
deduplication coordination, plus the components that
effectively deduplicate the stream, Chunk Division,
Identifier Generation, Redundancy Detection, Redundancy
Elimination and the Stream Reconstruction (SR) module.
We describe each one next:

1) Deduplication Master: The Deduplication Master
(DM) coordinates the TS-DDP. In order to explain the
algorithm followed by the DM (Figure 2) let us assume that
two remote points, the sender node and the receiver node,
are running an appplication that exchanges data through a
TurboSockets channel. The example shows unidirectional
communication for the sake of simplicity, however Tur-
boSockets offer bidirectional data transmission. Next we
explain the algorithm.

1) In order to send data, the application calls the send
function, which copies the data array to the Private
Send Buffer (PSB), where data stays until the DM con-
sumes it and initiates the TS-DDP. The data that the DM
consumes from the PSB and delivers to deduplication
forms a stream.

2) Each stream enters the CD module. The CD divides
the the stream into chunks according to the division
algorithm configuration that is set for the current dedu-
plication level.

3) The IG module generates a hash-based identifier for
each chunk, according to the configured Identifier Gen-
eration Algorithm.

4) The Redundancy Detection and Removal module
(RDR), which comprises the RD and RE phases, packs
all the newly generated chunk identifiers into a single
message, along with the respective chunk offset (within
the stream) and size. The RDR transmits the message,
called request message, to the receiver.

5) At the receiver, the RDR receives and processes the
request message. The RDR performs queries to the SE
with each identifier present in the request message. If
the identifier is present in the SE, then it is considered
redundant, otherwise it is considered non-redundant.

The SE returns all the chunk recipes associated with the
redundant identifiers. A recipe is the data structure that
enables the chunk reconstruction locally and contains
for each chunk: the identifier, the chunk offset and the
chunk size . The chunk sizes of redundant identifiers
are compared against the size present in the recipe.
If sizes do not match, a collision is detected and
the identifier is considered non-redundant. Otherwise,
chunk reconstruction takes place with assistance of
the recipe. The DM stores the reconstructed chunk
data within the Private Receiver Buffer (PRB) where
it remains unavailable for the application to consume,
until the complete data stream is present in the PRB.

6) Once the RDR knows which chunks are redundant, it
fills and transmits the reply message. The reply message
encodes the redundancy of each chunk present in the
request message into a bitmap. The bitmap assigns one
bit to each identifier of the request-message. If the bit
is set, then the identifier is redundant. If the bit is not
set, the identifier is not redundant. The bit position of
each identifier is identical to the position of the same
identifier in the request message. This policy allows
the sender to identify what is the identifier encoded
by a certain bit, without the need of transmitting the
identifier again. In the example of Figure 2, the request-
message contained the identifiers {A,F,G}, and being
only G non-redundant, the bitmap looks like {1,1,0}.

7) One of the following steps occur:
a) If there are more levels of deduplication to perform,

the DM saves the non-redundant chunks from the
reply message and forwards them to the next level
of deduplication, where the DM executes the steps
2-7 again, with the configuration of the next level of
deduplication. In the case where the bitmap declares
that all chunks are redundant, the stream deduplica-
tion is finished.

b) If no more deduplication levels are available, the
DM packs all data from the chunks marked as
non-redundant in the bitmap, into a message which
we call data-message. The DM transmits the data-
message to the receiver node.

8) When the distributed deduplication of a stream is
finished, the receiver node already holds a copy of the
original stream at the PRB, which may now make the
stream available for consumption by the API recv call.

2) Chunk Division Module: We designed TurboSockets
to support the inclusion of different division algorithms
(Section III-C2) in a very simple and modular manner. New
additions just require to implement the interface presented in
the Table II. The serialize and deserialize functions enable
the exchange of configurations between TurboSockets in-
stances, during the initial handshake protocol. TurboSockets
support several data division algorithms, including WSD,
FSD and CDC as built-in options. The programmer has
complete freedom to configure algorithms with all possible
parameter configurations (e.g granularity, maximum chunk
size).



Table II
DIVISION ALGORITHM API IN C

int div alg next chunk(ts env t *env,ts segment t *seg,ts div info t
*info,ts segment t **chk)
ts div alg t *div alg div alg init()
char *div alg serialize()
ts div alg t *div alg deserialize(ts div alg t *alg serialized)

3) Identifiers Generation Module: The IG module offers
modular Identifier Generation Algorithms (section II-B),
since any expert programmer might plug in new Identifier
Generation Algorithms by implementing the interface of
Table III. TurboSockets do not need to know what the
generated identifier represent, as it also the Identifier Gener-
ation Algorithm that performs the RD, with the function
is chunk redundant(). This design allows to easily inte-
grate IGAs other than compare-by-hash (e.g. super-sketches,
simhashes). The TurboSockets delivers MurmurHash3 128
bits as the built-in Identifier Generation Algorithm.

Table III
IDENTIFIER GENERATION ALGORITHM API IN C

int id alg generate gen(ts env t *env,ts segment t *chk, ts identifier t *id)
int id alg is chunk redudant(ts env t *env,ts segment t chk,ts identifier t *id)
size t id alg size()
id alg * id alg init()
char *id alg serialize()
ts id gen t id alg deserialize(char *alg serialized)

IV. EVALUATION

In this section we evaluate our implementation of the
TurboSockets middleware. More precisely, we intend to
answer two decisive questions: What is the amount of data
that an application is able to reduce when transferring data
a across a pair of TurboSockets?, and What is the overhead
introduced by TurboSockets?.

A. Methodology
We implemented the prototype TS-Proto, which includes

two modules: the TS-Proto-Lib and the TS-Proto-Exp. The
TS-Proto-Lib, implemented in C, features the TurboSockets
middleware that we described in this document. The TS-
Proto-Exp, implemented in C and Python, enables exper-
iments over the TS-Proto-Lib by including the following
functionality: 1) Transfers workloads from one site (sender)
to the other (receiver) using the TS-Proto-Lib to perform
the data transferences. 2) Measures the experimental results,
such as, the number of redundant bytes detected, total
transferred volume and execution time.

Two machines interconnected by a network performed
the experiments. Each machine runs the TS-Proto. Both
machines are Large instances of Amazon’s Elastic Compute
Cloud (Amazon EC2)6, and present the following equivalent
setup: Linux Ubuntu 12.04 64 bits, 7.5 GiB of memory, two
cores at 2GHz of an Intel Xeon CPU E5-2650. In order to
have reliable values about the network available bandwidth,
we first benchmarked the network utilizing the iperf tool7.
The method consisted of running iperf during 10 s for 50
times, with an interval of 10 seconds between each iperf
run. The average available bandwidth obtained was 860.48
Mbps (+/- 3.17%).

On the second experiment, we used a class base queue to
emulate different bandwidths. The objective is to experiment

6http://aws.amazon.com/ec2/
7http://sourceforge.net/projects/iperf/
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Figure 3. Total data transferred by TurboSockets pair

the behaviour of TS-Proto-Lib in relevant network technolo-
gies, namely, the IEEE 802.11n (30 Mbps), 802.11 b (11
Mbps) and Bluetooth 2.0 (3 Mbps). Again we benchmarked
the network for each bandwidth emulated, resorting to the
same method that was used to benchmark the network, pre-
viously. We obtained the following bandwidths: Bluetooth -
2.875 Mbps (+/- 1%); 802.11b - 11.212Mbps (+/- 0.28%);
802.11n - 30.212 Mbps (+/-0.09%).

All experiments were based on two versions of a set
of files. The receiver is always in possession of the early
version, and we evaluate the transmission performance of the
second version. The workloads are identical to the ones used
in a number of relevant papers in deduplication [15; 17; 16].
The first group of workloads are software development
sources, from real-world projects, namely the Linux kernel
(2.4.22 and 2.4.26) and the gcc compiler (20.1 and 20.7).
The second group of workloads comprehends binaries from
an operating system, Linux-Ubuntu (5.06 32-bits and 7.10
64 bits), which include the contents of the /usr/bin directory
trees. Workloads are called from now on linux, gcc and bin.

In the first experiment we wanted to measure the amount
of transferred data that the TS-Proto-Lib can save, by con-
figuring the TS-Proto-Lib with the CDC division algorithm
and the MurmurHash3 128 bits. We measured the amount
of data transferred for several CDC granularities. In the
second experiment, to assess the efficiency performance of
the TS-Proto-Lib, we measured the transfer time experi-
mented across a TurboSockets pair, in several bandwidth
contexts. In both experiments, the results obtained with
bare (undeduplicated) BSD Sockets are also presented for
reference.

B. Transferred Volume

In this experiment, the TS-Proto-Exp transferred all the
workloads gcc, linux and bin, from one machine (sender) to
the other (receiver). We configured the TS-Proto-Lib pair
with several CDC granularities. Minimum and maximum
chunk sizes would sit 20 KB below and above the CDC
granularity. Since granularities cannot have negative values,
the minimum threshold for minimum chunk granularity
was set to 256 B. Figure 3 shows the result of this ex-
perimentation, where raw corresponds to the BSD Socket
results. Comparing to the BSD Socket, TS-Proto-Lib saved
bandwidth in all workloads. Linux workload experimented
bandwidth savings up to 81%, gcc workload showed 37% of
savings and finally the bins had a bandwidth usage reduction
of 22%. We also can observe that the amount of redundancy
detected decreases as we increase chunk granularity.



Figure 4. Transfer time for different bandwidths

C. Performance
Once we measured the direct benefits of the TS-Proto-

Lib in reducing the bandwidth usage, it was important
to estimate how much delay was being introduced to the
data transmissions. Therefore, we set the TS-Proto-Lib to
a fixed configuration of CDC with chunks of 2KB, ran all
workloads, and compared the time taken to finalize each
transference against the time taken by a BSD Socket at
the same bandwidth. We tested several bandwidths in order
emulate different network contexts.

Figure 4 presents the obtained results. BSD Sockets
(Socket in Figure 4) can only clearly outperform the TS-
Proto-Lib (T Socket in Figure 4) when there is not any
bandwidth constriction (No Limit in Figure 4) in the network
with 860 Mbps. These results are very interesting, as they
totally expose the overhead introduced by the TS-Proto-Lib,
inherent to the computational complexity of deduplication
(e.g. additional abstraction layers, hashes computation, SE
accesses for chunk look-ups), plus the additional RTT that
distributed deduplication requires.

For 30 Mbps (IEEE 801.11n) the TS-Proto-Lib took less
18% of time to complete the transfer of linux workloads,
while for gcc and bins workloads BSD sockets were faster
15% in average. For 11 Mbps (IEEE 801.11b) the TS-Proto-
Lib was always faster, taking from 20% to 60% less time.
In a 3Mbps bandwidth the TS-Proto-Lib was 25% to 80%
faster than BSD Socket.

D. Discussion
Despite having a clear overhead when working on a

network with almost unlimited resources, our TurboSockets
proposal emulated by the TS-Proto-Lib middleware is con-
sistently faster (up to 80%) when we introduce real-world
bandwidth constraints. The large bandwidth savings (up to
80%) that TurboSockets obtained in the Transferred Volume
experiment (Section IV-B) lead to the lower transfer times in
the Performance experiment (Section IV-C). We also argue
that even with worse performance than BSD Sockets, under
almost unlimited bandwidths, TurboSockets may still offer
considerable advantages, in contexts where large amounts of
bandwidth are available, but the price of each MB transferred
is very expensive (e.g. Mobile 4G).

V. CONCLUSIONS

The time has come to devise general-purpose middle-
ware abstractions that can democratize the use of state-
of-art distributed deduplication techniques to average pro-
grammers. We propose TurboSockets, the first middleware

abstraction that enables unskilled programmers to establish a
communication channel between two remote processes and,
through that channel, exchange data streams whose content
is deduplicated by state-of-the-art algorithms. Turbosockets
hides all the complexity associated with the deduplication
protocol away from the programmer, closely resembling
traditional inter-process communication APIs.

Using a full-fledged prototype of the TurboSockets mid-
dleware, experimental results with real workloads confirm
gains in performance and transferred volumes for a wide
range of real workloads and scenarios.

As future work, we intend to adapt comon remote invoca-
tion middleware such as Remote Procedure Call and Remote
Method Invocation middleware to implicitly support dis-
tributed deduplication by relying on TurboSockets. Further-
more, we plan to work on automatic learning mechanisms
that can adaptively adjust each TurboSocket’s configuration
in order to optimize it to the most recent data sets and
communication patterns that have been observed on that
TurboSocket, thereby relieving the programmer from such
details.
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